Statistical entropy of quantum systems

Smitarani Mishra¹, and Shaon Sahoo²

^{1,2}Department of Physics, Indian Institute of Technology Tirupati, Andhra Pradesh, India, 517619

Understanding the relationship between von Neumann (VN) entropy and thermodynamic (TH) entropy is a fundamental challenge in quantum statistical mechanics. For a quantum system in a random pure state, the average VN entropy of the subsystem scales as $\ln(D_1)$, where D_1 is the subsystem's Hilbert space dimension[1, 2]. We can strengthen this result for thermalized systems. The VN entropy of the subsystem, when averaged over the subspace (\mathscr{H}_E) corresponding to the narrow energy shell $(E, E + \Delta E)$ of the full system, scales as $\ln(\tilde{d}_1)$. Here, $\tilde{d}_1 = D_1^{\gamma}$ represents the effective Hilbert space dimension of the subsystem relevant to \mathscr{H}_E , with $\gamma = \ln(d_E)/\ln(D)$, D as the total Hilbert space dimension and d_E as the dimension of \mathscr{H}_E . This result demonstrates that the VN entropy of a subsystem in thermal equilibrium is equivalent to its TH entropy, providing a statistical interpretation of TH entropy in the subsystem of quantum systems. Numerical results from a one-dimensional spin-1/2 chain with next-nearest neighbor interactions confirm this scaling, bridging quantum statistical mechanics and thermodynamics [3].

References

¹D. N. Page, "Average entropy of a subsystem", Phys. Rev. Lett. 71, 1291–1294 (1993).

- ²S. Sen, "Average entropy of a quantum subsystem", Phys. Rev. Lett. 77, 1 (1996).
- ³S. Mishra and S. Sahoo, "Statistical entropy of quantum systems", arXiv (2024).